143 research outputs found

    Deep Feature Factorization For Concept Discovery

    Get PDF
    We propose Deep Feature Factorization (DFF), a method capable of localizing similar semantic concepts within an image or a set of images. We use DFF to gain insight into a deep convolutional neural network's learned features, where we detect hierarchical cluster structures in feature space. This is visualized as heat maps, which highlight semantically matching regions across a set of images, revealing what the network `perceives' as similar. DFF can also be used to perform co-segmentation and co-localization, and we report state-of-the-art results on these tasks.Comment: The European Conference on Computer Vision (ECCV), 201

    Evaluating and Interpreting Deep Convolutional Neural Networks via Non-negative Matrix Factorization

    Get PDF
    With ever greater computational resources and more accessible software, deep neural networks have become ubiquitous across industry and academia. Their remarkable ability to generalize to new samples defies the conventional view, which holds that complex, over-parameterized networks would be prone to overfitting. This apparent discrepancy is exacerbated by our inability to inspect and interpret the high-dimensional, non-linear, latent representations they learn, which has led many to refer to neural networks as ``black-boxes''. The Law of Parsimony states that ``simpler solutions are more likely to be correct than complex ones''. Since they perform quite well in practice, a natural question to ask, then, is in what way are neural networks simple? We propose that compression is the answer. Since good generalization requires invariance to irrelevant variations in the input, it is necessary for a network to discard this irrelevant information. As a result, semantically similar samples are mapped to similar representations in neural network deep feature space, where they form simple, low-dimensional structures. Conversely, a network that overfits relies on memorizing individual samples. Such a network cannot discard information as easily. In this thesis we characterize the difference between such networks using the non-negative rank of activation matrices. Relying on the non-negativity of rectified-linear units, the non-negative rank is the smallest number that admits an exact non-negative matrix factorization. We derive an upper bound on the amount of memorization in terms of the non-negative rank, and show it is a natural complexity measure for rectified-linear units. With a focus on deep convolutional neural networks trained to perform object recognition, we show that the two non-negative factors derived from deep network layers decompose the information held therein in an interpretable way. The first of these factors provides heatmaps which highlight similarly encoded regions within an input image or image set. We find that these networks learn to detect semantic parts and form a hierarchy, such that parts are further broken down into sub-parts. We quantitatively evaluate the semantic quality of these heatmaps by using them to perform semantic co-segmentation and co-localization. In spite of the convolutional network we use being trained solely with image-level labels, we achieve results comparable or better than domain-specific state-of-the-art methods for these tasks. The second non-negative factor provides a bag-of-concepts representation for an image or image set. We use this representation to derive global image descriptors for images in a large collection. With these descriptors in hand, we perform two variations content-based image retrieval, i.e. reverse image search. Using information from one of the non-negative matrix factors we obtain descriptors which are suitable for finding semantically related images, i.e., belonging to the same semantic category as the query image. Combining information from both non-negative factors, however, yields descriptors that are suitable for finding other images of the specific instance depicted in the query image, where we again achieve state-of-the-art performance

    Deep Feature Factorization for Concept Discovery

    Get PDF
    We propose Deep Feature Factorization (DFF), a method capable of localizing similar semantic concepts within an image or a set of images. We use DFF to gain insight into a deep convolutional neural network's learned features, where we detect hierarchical cluster structures in feature space. This is visualized as heat maps, which highlight semantically matching regions across a set of images, revealing what the network 'perceives' as similar. DFF can also be used to perform co-segmentation and co-localization, and we report state-of-the-art results on these tasks

    Color Representation in Deep Neural Networks

    Get PDF
    Convolutional neural networks are top-performers on image classification tasks. Understanding how they make use of color information in images may be useful for various tasks. In this paper we analyze the representation learned by a popular CNN to detect and characterize color-related features. We confirm the existence of some object- and color-specific units, as well as the effect of layer-depth on color-sensitivity and class-invariance

    NeRF-GAN Distillation for Efficient 3D-Aware Generation with Convolutions

    Full text link
    Pose-conditioned convolutional generative models struggle with high-quality 3D-consistent image generation from single-view datasets, due to their lack of sufficient 3D priors. Recently, the integration of Neural Radiance Fields (NeRFs) and generative models, such as Generative Adversarial Networks (GANs), has transformed 3D-aware generation from single-view images. NeRF-GANs exploit the strong inductive bias of neural 3D representations and volumetric rendering at the cost of higher computational complexity. This study aims at revisiting pose-conditioned 2D GANs for efficient 3D-aware generation at inference time by distilling 3D knowledge from pretrained NeRF-GANs. We propose a simple and effective method, based on re-using the well-disentangled latent space of a pre-trained NeRF-GAN in a pose-conditioned convolutional network to directly generate 3D-consistent images corresponding to the underlying 3D representations. Experiments on several datasets demonstrate that the proposed method obtains results comparable with volumetric rendering in terms of quality and 3D consistency while benefiting from the computational advantage of convolutional networks. The code will be available at: https://github.com/mshahbazi72/NeRF-GAN-Distillatio

    Preconditioned Spectral Descent for Deep Learning

    Get PDF
    Deep learning presents notorious computational challenges. These challenges in- clude, but are not limited to, the non-convexity of learning objectives and estimat- ing the quantities needed for optimization algorithms, such as gradients. While we do not address the non-convexity, we present an optimization solution that exploits the so far unused “geometry” in the objective function in order to best make use of the estimated gradients. Previous work attempted similar goals with precon- ditioned methods in the Euclidean space, such as L-BFGS, RMSprop, and ADA- grad. In stark contrast, our approach combines a non-Euclidean gradient method with preconditioning. We provide evidence that this combination more accurately captures the geometry of the objective function compared to prior work. We theo- retically formalize our arguments and derive novel preconditioned non-Euclidean algorithms. The results are promising in both computational time and quality when applied to Restricted Boltzmann Machines, Feedforward Neural Nets, and Convolutional Neural Nets

    Stochastic Spectral Descent for Discrete Graphical Models

    Get PDF
    Interest in deep probabilistic graphical models has increased in recent years, due to their state-of-the-art perfor- mance on many machine learning applications. Such models are typically trained with the stochastic gradient method, which can take a significant number of iterations to converge. Since the computational cost of gradient estimation is prohibitive even for modestly-sized models, training becomes slow and practically- usable models are kept small. In this paper we propose a new, largely tuning-free algorithm to address this problem. Our approach derives novel majorization bounds based on the Schatten-∞ norm. Intriguingly, the minimizers of these bounds can be interpreted as gradient methods in a non-Euclidean space. We thus propose using a stochastic gradient method in non-Euclidean space. We both provide simple conditions under which our algorithm is guaranteed to converge, and demonstrate empirically that our algorithm leads to dramatically faster training and improved predictive ability compared to stochastic gradient descent for both directed and undirected graphical models

    Evaluation of antifungal effect of Parkia biglobosa and Vitellaria paradoxa against selected pathogenic fungi

    Get PDF
    The aim of this study was to evaluate the antifungal effects of extracts of two plant species namely Vitellaria paradoxa and Parkia biglobosa against growth of some selected fungal species. Aqueous and ethanolic extracts of these plant species were assessed against Aspergillus flavus, Candida albican and Trichophyton mentagrophyte. Phytochemical analysis of these plants showed the presence of alkaloids, flavonoids, tannins, saponins and other secondary metabolites. The minimum fungicidal concentration (MFC) of aqueous extract of P. biglobosa was 150 mg mL-1 against both C. albican and A. flavus. On the other hand, ethanolic extract of this plant species had MFC of 300 mg mL-1 for A. flavus, while there was no MFC for C. albican. Likewise, aqueous extract of V. paradoxa also had same value of MFC against C. albican as well as A. flavus. Ethanolic extract of V. paradoxa had MFC of 150 and 300 mg mL-1 against C. albican and A. flavus, respectively. The combined aqueous extracts of these plant species showed MFC of 300 mg mL-1 against both the C. albican and A. flavus. By contrast, the mixture of ethanolic extracts had MIC of 150 mg mL-1 against C. albican, and no MFC for A. flavus
    • 

    corecore